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Supplementary Figure 1. Zeta-potentials of the suspensions of graphene oxide and Ti0.87O2 

nanosheets.  

  



3 
 

 

Supplementary Figure 2. Photographs of the (a) PP, (b) anatase TiO2/PP, (c) GO/PP, and (d) 

Ti0.87O2/PP separators.  
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Supplementary Figure 3. SEM image of the commercial PP separators.  
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Supplementary Figure 4. XRD patterns of (a) PP, (b) anatase TiO2/PP, (c) GO/PP, and (d) Ti0.87O2/PP 

separators. The 101 diffraction peak of anatase TiO2 (A-TiO2), 002 diffraction peak of GO and 010 

diffraction peak of Ti0.87O2 were marked.  
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Supplementary Figure 5. XRD pattern for the Ti0.87O2 nanosheets without PP separators. 
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Supplementary Figure 6. Thermogravimetric curve for the nanosheet films without PP separators. 
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Supplementary Figure 7. XRD patterns of Ti0.87O2/PP separators with different surface area mass 

loadings. 
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Supplementary Figure 8. SEM image of Ti0.87O2/PP separators with a surface area mass loading of 

0.032 mg cm−2. 

  



10 
 

 

Supplementary Figure 9. Cross-section SEM image of Ti0.87O2/PP separators with a surface area mass 

loading of 0.032 mg cm−2. 
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Supplementary Figure 10. SEM image of Ti0.87O2/PP separators with a surface area mass loading of 

0.096 mg cm−2.  
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Supplementary Figure 11. Cross-section SEM image of Ti0.87O2/PP separators with a surface area 

mass loading of 0.096 mg cm−2. 
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Supplementary Figure 12. SEM image of anatase TiO2/PP separators with a surface area mass loading 

of 0.016 mg cm−2.  
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Supplementary Figure 13. SEM image of GO/PP separators with a surface area mass loading of 0.016 

mg cm−2. 
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Supplementary Figure 14. Cross-section SEM image of GO/PP separators with a surface area mass 

loading of 0.016 mg cm−2. 

  



16 
 

 

Supplementary Figure 15. 2D theoretical specific surface area of Ti0.87O2 and GO monolayers. (a) 

In-plane structure of Ti0.87O2 with a rectangular unit cell: a = 0.38 nm and c = 0.30 nm. (b) In-plane 

structure of graphene with a hexagonal unit cell: a = 0.25 nm. The ideal graphene structure was used 

to estimate the 2D theoretical specific surface area of GO. For an approximate calculation, the single 

layers of Ti0.87O2 and graphene were assumed to neatly deposit on the PP separator without gap. The 

2D theoretical specific surface area of Ti0.87O2 single layer can be calculated based on the in-plane unit 

cell area, W(Ti0.87O2) = 2 M(Ti0.87O2) / (a × c × NA). The 2D theoretical specific surface area of GO single 

layer can be calculated based on the in-plane unit cell area, W(GO) = 2 M(C) / (a × a × sin120°× NA). NA 

is the Avogadro’s number, M(Ti0.87O2) and M(C) are the formula weights of Ti0.87O2 and carbon. Under a 

same specific surface area, W(GO) × n(GO) = W(Ti0.87O2) × n(Ti0.87O2). n(GO) and n(Ti0.87O2) are the number of 

single layers of GO and Ti0.87O2, respectively. So, the n(GO) / n(Ti0.87O2) = ~2.9. Considering the 

crystallinity thickness of GO and Ti0.87O2 is 0.34 and 0.75 nm, respectively. The thickness (h) of the 

functional layer of GO and Ti0.87O2 with the same specific surface area is h(GO) / h(Ti0.87O2) = ~1.36.  
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Supplementary Figure 16. Photographic pictures of the PP and Ti0.87O2/PP separators before and 

after heating process. 
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Supplementary Figure 17. Contact angle measurements for electrolytes (1 M LiTFSI in DME: DOL 

1: 1, v/v) on (a) PP and (b) Ti0.87O2/PP separators.  
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Supplementary Figure 18. Digital photos of the Ti0.87O2/PP separator under different bending 

conditions. 
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Supplementary Figure 19. Nyquist plots of PP, anatase TiO2/PP, GO/PP and Ti0.87O2/PP separators 

estimating the Li-ion conductivity.  
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Supplementary Figure 20. Nyquist plots of Ti0.87O2/PP separators with different weight densities.  
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Supplementary Figure 21. Li ion conductivity of PP, anatase TiO2/PP, GO/PP and Ti0.87O2/PP 

separators with different surface area mass loadings. Error bars were included, which represent the 

standard deviation of the data taken from five samples. 
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Supplementary Figure 22. Chronoamperometric measurements of PP, anatase TiO2/PP, GO/PP and 

Ti0.87O2/PP separators.  
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Supplementary Figure 23. Li ion transference number of PP, anatase TiO2/PP, GO/PP and Ti0.87O2/PP 

separators with different surface area mass loadings. Error bars were included, which represent the 

standard deviation of the data taken from five samples. 
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Supplementary Figure 24. Voltage profiles of Li plating/stripping processes in Li||Cu cells with 

anatase TiO2/PP separators with an areal capacity of 1 mAh cm−2 at 1 mA cm−2. 
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Supplementary Figure 25. Voltage profiles of Li plating/stripping processes in Li||Cu cells with 

GO/PP separators with an areal capacity of 1 mAh cm−2 at 1 mA cm−2. 
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Supplementary Figure 26. Coulombic efficiencies of Na||Cu cells with PP and Ti0.87O2/PP separators 

with an area capacity of 1 mAh cm−2 at 1 mA cm−2. 
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Supplementary Figure 27. Voltage profiles of Na plating/stripping processes in Na||Cu cells with PP 

separators with an areal capacity of 1 mAh cm−2 at 1 mA cm−2. 
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Supplementary Figure 28. Voltage profiles of Na plating/stripping processes in Na||Cu cells with 

Ti0.87O2/PP separators with an areal capacity of 1 mAh cm−2 at 1 mA cm−2. 
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Supplementary Figure 29. SEM image of the Li metal anodes disassembled from the symmetrical 

cell with the PP separator at a current density of 2 mA cm−2 with a capacity of 1 mAh cm−2 for 20 

cycles.  
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Supplementary Figure 30. Cross-section SEM image of the Li metal anodes disassembled from the 

symmetrical cell with the PP separator at a current density of 2 mA cm−2 with a capacity of 1 mAh 

cm−2 for 20 cycles.  
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Supplementary Figure 31. SEM image of the Li metal anodes disassembled from the symmetrical 

cell with the Ti0.87O2/PP separator at a current density of 2 mA cm−2 with a capacity of 1 mAh cm−2 for 

20 cycles.  
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Supplementary Figure 32. Cross-section SEM image of the Li metal anodes disassembled from the 

symmetrical cell with the Ti0.87O2/PP separator at a current density of 2 mA cm−2 with a capacity of 1 

mAh cm−2 for 20 cycles.  
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Supplementary Figure 33. High-resolution XPS spectrum of Ti 2p of pristine and cycled Ti0.87O2/PP 

separators disassembled from the symmetrical cell at a current density of 2 mA cm−2 with a capacity 

of 1 mAh cm−2 for 20 cycles. 
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Supplementary Figure 34. A representative force-indentation curve of the Ti0.87O2/PP separator. The 

curve is fitted using the Hertzian model in the linear region.  
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Supplementary Figure 35. The models of restacked thin layers for the (a) conventional nanosheets 

(without defects) and (b) defective nanosheets.  
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Supplementary Figure 36. Schematic illustration of mechanism of dendrite-free Li/Na anode by 

using anionic Ti0.87O2 nanosheets with atomic Ti vacancies.  
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Supplementary Figure 37. Schematic illustration of Li/Na deposition over the bare anode. 
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Supplementary Figure 38. Polysulfide permeation measurements in H-type cells with the (a) anatase 

TiO2/PP and (b) GO/PP separators.  
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Supplementary Figure 39. Calculation of negative charge density of Ti0.87O2
0.52– nanosheets. In-plane 

structure of Ti0.87O2 shows a rectangular unit cell with a = 0.38 nm and c = 0.30 nm. The 2D charge 

density (ρ) of Ti0.87O2 can be calculated based on the in-plane unit cell area, ρ(Ti0.87O2) = 2 × 0.52 × 1.60 

× 10−19 / (a × c) = 1.46 C m–2.   
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Supplementary Figure 40. Optimized conformations of (a) S2
2−, (b) S4

2−, (c) S6
2− and (d) S8

2− on 

anatase TiO2. 
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Supplementary Figure 41. Optimized conformations of (a) S2
2−, (b) S4

2−, (c) S6
2− and (d) S8

2− on GO 

sheet. 
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Supplementary Figure 42. Digital images of the Li metal anodes of the disassembled cells after10 

cycles with the (a) PP and (b) Ti0.87O2/PP separators. 
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Supplementary Figure 43. CV curve of the Li–S cell with a Ti0.87O2/PP separator at 0.1 mV s−1. 
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Supplementary Figure 44. Voltage profiles of the Li–S cell with a Ti0.87O2/PP separator at 0.2C. 
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Supplementary Figure 45. Voltage profiles of the Li–S cell with a PP separator at 0.2C. 
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Supplementary Figure 46. Voltage profiles of the Li–S cell with an anatase TiO2/PP separator at 0.2C. 
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Supplementary Figure 47. Voltage profiles of the Li–S cell with a GO/PP separator at 0.2C. 

  



49 
 

 

Supplementary Figure 48. The rate performance of Li–S cells with PP and Ti0.87O2/PP separators. 
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Supplementary Figure 49. Voltage profiles of the Li–S cell with a Ti0.87O2/PP separator at various C 

rates. 
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Supplementary Figure 50. Coulombic efficiency for a Li-S cell with a Ti0.87O2/PP separator during 

the long-term cycling at 1C for 5000 cycles. 
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Supplementary Figure 51. SEM image of the cycled Ti0.87O2/PP separators from the disassembled 

cells in a fully discharged state after 500 cycles. 
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Supplementary Figure 52. Coulombic efficiency for a Li-S cell with a Ti0.87O2/PP separator at a sulfur 

mass loading of 3.5 mg cm−2 during the long-term cycling. 
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Supplementary Figure 53. SEM image of the CNT/S cathodes. 

  



55 
 

 

Supplementary Figure 54. Cycling performance of the Li-S cells at 0.2C using the CNT/S cathodes 

and the Ti0.87O2/PP separators. 
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Supplementary Figure 55. Areal capacities of the Li-S cells using the CNT/S cathodes and the 

Ti0.87O2/PP separators. 
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Supplementary Figure 56. Coulombic efficiency for a flexible Li-S pouch cell with a Ti0.87O2/PP 

separator under different bending angles during the cycling test. 
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Supplementary Figure 57. Voltage profiles of the Li–Se cell with a PP separator at 0.2C. 
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Supplementary Figure 58. Voltage profiles of the Li–Se cell with a Ti0.87O2/PP separator at 0.2C. 
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Supplementary Figure 59. Cycling performance of the Li-Se cells at 0.2C with PP and Ti0.87O2/PP 

separators. 
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Supplementary Figure 60. Voltage profiles of the Na–Se cell with a PP separator at 0.2C. 
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Supplementary Figure 61. Voltage profiles of the Na–Se cell with a Ti0.87O2/PP separator at 0.2C. 
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Supplementary Figure 62. Cycling performance of the Na-Se cells at 0.2C with PP and Ti0.87O2/PP 

separators. 
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Supplementary Movie 1. Molecular dynamic simulation of the diffusion of polysulfide anions and Li 

ions through the anionic Ti0.87O2 monolayer with one Ti vacancy. 
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Supplementary Table 1. Electrochemical properties of various functional separators in Li-S cells. 

Functional separators Battery performance 

Ref 

Materials 

Surface 

area mass 

loading 

(mg cm−2) 

Thickness 

(μm) 

Cathode 

composite 

active 

material 

S wt.% 

(mg cm−2) 

Voltage 

range (V) 
Electrolyte 

Cycling performance 

(cycles, C-rates (1C= 

1675 mA g-1), capacity 

decay rate) 

GO 0.12 5 
Carbon 

black/S 
1.0-1.5  1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

100, 0.1C, 0.23% 1 

Nafion/GO 0.128 0.030 
Garphene/

CNT/S 
1.2 1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

200, 0.1C, 0.18% 2 

Commercial 

graphene 
1.3 30 

Carbon 

black/S 
1.5-2.1 1.5-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

500, 0.9C, 0.064% 3 

CVD-

derived 

porous 

graphene 

0.54 10 CNT/S 1.8–2.0 1.8-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

150, 0.5C, 0.16% 4 

Commercial 

graphene@

porous 

carbon 

(G@PC) 

0.075 0.9 
Carbon 

black/S 
3.5 1.6-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 2.0 wt% 

LiNO3 

100, 0.2C, 0.08% 5 
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Co/N-

carbon 

sheets/reduc

ed graphene 

oxide 

0.2 41.3 CNT/S 1.0 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

500, 0.2C, 0.07% 6 

Cellular 

CVD-

derived 

graphene 

framework 

0.3 30 CNT/S 1.2 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

300, 0.8375C, 0.085% 7 

B-rGO 0.2-0.3 25 CNT/S 1.45-1.56 1.8-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.2 M 

LiNO3 

300, 0.1C, 0.1532% 8 

rGO@sodiu

m 

lignosulfona

te 

(rGO@SL) 

0.2 ~20 
Carbon 

black/S 
1.5 1.7-2.7 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

1000, 2C, 0.026% 9 

CNTs/N‐

doped 

carbon 

quantum dot 

(CNT/NCQ

D) 

0.15 25~30 
Carbon 

black/S 
1.3-1.5 1.8-2.7 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 2.0 wt% 

LiNO3 

1000, 0.5C, 0.05% 10 

CNF-Gum 

Arabic 
0.25 19  CNF/S 1.1 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

250, 1C, 0.024% 11 
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with 2.0 wt% 

LiNO3 

Mg2Al-

LDH 
0.018 0.02-0.03 

Carbon 

black/S 
1.2-1.4 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

200, 0.5C, 0.18% 12 

NiFe-

LDH/CVD-

derived N-

doped 

graphene 

0.3 1.5 Carbon/S 1.2 1.7-2.8 

1 M LiTFSI in 

2.5 M 

Li2S8/tetragly

me 

1000, 2C, 0.06% 13 

MoS2  - 0.350 
Carbon 

black/S 
- 1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

600, 0.5C, 0.083% 14 

MoS2-

PDDA/PAA 
0.1 3 

Carbon 

black/S 
1.2-4.0 1.7-2.6 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

2000, 1C, 0.029% 15 

Co9S8 0.16 - 
Carbon 

black/S 
2.0 1.8-2.8 

1.85 M 

LiCF3SO3 in 

DOL/DME 

(v/v = 1:1) 

with 0.1 M 

LiNO3 

1000, 1C, 0.039% 16 
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Sb2Se3-

x/rGO  
0.5 32 

Carbon 

black/S 
1.8 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

500, 1C, 0.027% 17 

MoP/rGO 0.35-0.45 10 Carbon/S 3.6-4.0 1.8-2.8 

0.6 M LiTFSI 

in DOL/DME 

(v/v = 1:1) 

with 0.4 M 

LiNO3 

120, 0.1C, 0.045% 18 

Ti3C2 

MXene 
0.1 0.522 

Carbon 

black/S 
1.2 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.1 M 

LiNO3 

500, 0.5C 0.062% 19 

Black 

Phosphorus 
0.4 ~0.35 

Carbon 

black/S 
1.5–2 1.7-2.6 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

100, 0.2C, 0.14% 20 

Super P/Red 

phosphorus 
0.3 8 

Carbon 

black/S 
2 1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.1 M 

LiNO3 

500, 1C, 0.036% 21 

BN-carbon - 6~7 
Carbon 

black/S 
2.1 1.5-3.0 

1 M LiPF6 in 

EC/DEC (v/v 

= 1:1) 

250, 0.5C, 0.0936% 22 
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BaTiO3  2.4 18-23 
Carbon 

black/S 
3.2 1.8-2.6 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.3 M 

LiNO3 

50, 0.1C, 0.34% 23 

HxMnO2+x/l

iquid phase-

exfoliated 

graphene/C

NTs 

0.2 3 CNT/S 1.8 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

1000, 1C, 0.04% 24 

TiO2/comm

ercial 

graphene 

0.15 3 CNT/S 1.2 1.8-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

300, 0.5C, 0.01% 25 

Li4Ti5O12/ch

emically 

exfoliated 

graphene 

0.346 35 
Carbon 

black/S 
1.0-1.2 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

500, 1C, 0.028% 26 

Ni3(HITP)2  0.066 0.34 CNT/S 8 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 2.0 wt% 

LiNO3 

500, 1C, 0.066% 27 

Cu2(CuTCP

P) 

nanosheets 

0.1 0.5 
Carbon 

black/S 
2 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 2.0 wt% 

900, 1C, 0.032% 28 
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LiNO3 

CNT@ZIF-

8 
0.9 15 

Carbon 

black/S 
1.2 1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.2 M 

LiNO3 

100, 0.2C, 0.45% 29 

Ce-

MOF/CNT 
0.4 8 

Carbon 

black/S 
2.5 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.1 M 

LiNO3 

800, 1C, 0.022% 30 

MOF@PV

DF-HFP 
None 28 

Carbon 

cloth/S 
1-1.5 1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.1 M 

LiNO3 

600, 0.5C, 0.0549% 31 

Bacterial 

cellulose/2

D MOF-Co 

(BC/2D 

MOF-Co) 

2.53 25 
Carbon 

black/S 
1.5 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

600, 1C, 0.07% 32 

MOF@GO 0.3 ~10 CMK3/S 0.6-0.8 1.5-3.0 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.1 M 

LiNO3 

1500, 1C, 0.019% 33 



71 
 

Laponite 

nanosheets 
0.7 3.5  

Carbon 

black/S 
1.0-1.2 1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 0.2 M 

LiNO3 

500, 0.2C, 0.06% 34 

Ti0.87O2 

nanosheets 
0.016 0.080 

Carbon 

black/S 

1.5 

1.7-2.8 

1 M LiTFSI in 

DOL/DME 

(v/v = 1:1) 

with 1.0 wt% 

LiNO3 

5000, 1C, 0.0036% 

This 

work 3.5 
4900, 1C, 0.0035% 

10000, 2C, 0.0035% 
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Supplementary Table 2. Comparison of Li+ conductivities of pristine and modified separators. 

Modified separator 

Li+ conductivity 

mS cm−1 

Pristine 

separator 

Li+ conductivity 

mS cm−1 

Ref 

MoS2/Celgard 0.20 Celgard 0.33 14 

LNS/CB-Celgard 0.590 Celgard 0.559 34 

MOF@PVDF‐HFP 0.094 Celgard 0.138 31 

MoS2-PDDA/PAA 0.48 Celgard 0.51 15 

Co-Nx@NPC/G‐PP 0.684 PP 0.403 6 

Ti0.87O2/PP 0.381 ± 0.028 PP 0.305 ± 0.015 This work 
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